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Abstract

Background—It remains unknown if later life breast cancer risk as determined by reproductive 

history is mediated by postmenopausal breast density and/or sex steroid levels.

Methods—Increased breast density is a strong surrogate for future breast cancer risk. A cross-

sectional study with a longitudinal follow up for breast health outcomes evaluated women without 

breast cancer (n = 1,023; 682 = parous), drawn from a high risk postmenopausal population, with 

questionnaire reported reproductive histories. The questionnaire was linked to prospective 

screening mammogram breast density measurements, and saliva biospecimens that were used to 

assess sex steroid hormone levels.

Results—Expected age and postmenopause related declines in salivary estradiol (E), 

progesterone (P), dehydroepiandrosterone (DHEA) and testosterone (T) levels were observed. 

This was most pronounced for DHEA and T, which were also the only postmenopausal hormone 

levels significantly associated with any reproductive characteristics: parity and breast feeding for 

DHEA, age-at-first birth for T. Postmenopausal breast density was borderline significantly lower 

with parity and higher body mass index (BMI). After multivariate analysis, T was the only 

hormone level to retain any association (negative, p<0.05) with breast density.

Conclusions and General Significance—While reproductive characteristics, in particular 

parity, generally demonstrated independent associations with postmenopausal breast density and 

E, P and DHEA levels, T levels showed concordant inverse associations with age-at-first birth and 

breast density. These findings suggest that reproductive effects and later life salivary sex steroid 

hormone levels may have independent effects on later life breast density and cancer risk.
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1. Introduction

Reproductive history, and in particular age at first birth, has been repeatedly demonstrated to 

be associated with breast cancer risk (1). However, there is a lack of understanding of the 

mechanisms by which pregnancy confers changes in breast cancer risk, thus limiting the 

extent to which these findings can be translated into interventions for prevention. Two 

mechanistic hypotheses include: i. Persistent changes in the hormonal milieu, and ii. 

Permanent morphological and gene expression changes imprinted by pregnancy-induced 

mammary gland differentiation. There is support for each of these hypotheses from 

epidemiological (1,2), observation and intervention research (3), and animal studies (4–6). 

Either of these hypotheses may be manifested by changes in later life breast density.

In addition to age-at-first full-term birth, epidemiological evidence supports an association 

between breast cancer risk and prior pregnancy characteristics including pre-term birth, 

preeclampsia, multi-fetal gestation and small placental weight (1,7,8). Mammographic 

density has a strong relationship to breast cancer risk (9,10). Reproductive history has also 

been reported to be related to breast density, with increased density associated with pre-term 

birth, nulliparity, and late age-at-first birth (8, 11–14). These findings appear strongest for 

first pregnancies, although many remain controversial (10). Confirmation of these findings 

could provide evidence that pregnancy characteristics influence breast cancer risk through 

hormonally mediated changes in the structure of the breast. There is however, conflicting 

evidence for a link between pregnancy, hormone levels and breast cancer. A secondary 

analysis of the Nurses Health Study showed a relationship between postmenopausal serum 

hormone levels and parity, as well as age-at-first birth (15); but other studies have shown no 

association between circulating sex hormones and parity (16–18). In postmenopausal 

women, circulating sex steroid hormone levels are strongly associated with breast cancer 

risk (17, 18), but any association of these hormone levels with breast density remains 

uncertain.

To address the question of whether early life reproductive factors, known to be associated 

with later life breast cancer risk, either mediate or moderate postmenopausal breast density 

and/or salivary sex steroid levels, we performed a cross-sectional analysis drawn from the 

larger Marin Women’s Study (MWS). Postmenopausal women without breast cancer (n = 

1,023; 682 = parous), and their self reported lifestyle and reproductive characteristics 

(including first pregnancy events), were examined along with screening mammogram breast 

density measurements. Self obtained saliva biospecimens were used to assess sex steroid 

hormone levels (estradiol, progesterone, dehydroepiandrosterone, testosterone). Saliva 

measurements reflect (but are not necessarily equal to) free plasma or serum concentrations 

of various steroidal hormones, certain growth factors, and many drugs if they are capable of 

being transferred by either intracellular (e.g. diffusion) or extracellular (e.g. ultrafiltration) 

mechanisms. Thus, numerous studies of saliva-based diagnostics have established that 
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clinically relevant analyte concentrations in saliva correlated with tissue fluid levels and can 

be used either for drug monitoring or to evaluate endocrine function, in particular circulating 

(unbound) levels of lipid-soluble steroids like cortisol, aldosterone, dehydroepiandrosterone, 

testosterone, progesterone, and estradiol (19).

2. Materials and Methods

2.1 Marin Women’s Study (MWS) Population and Measurements

This study was conducted within the context of the MWS. Marin residents were recruited 

through mammography facilities in Marin County and San Francisco which are included in 

the San Francisco Mammography Registry (SFMR), one of seven registries comprising the 

National Cancer Institute Breast Cancer Surveillance Consortium. This study was approved 

by the Marin General Hospital and Kaiser Permanente Northern California Institutional 

Review Boards, and all participants provided informed consent to fully participate in the 

study. Primary data collection in the MWS included self-reported information via a detailed 

questionnaire and saliva samples collected from consenting women. Secondary data were 

obtained by linkage with the SFMR on volumetric compositional breast density and breast 

cancer case status, as well as family history, weight and height. The MWS has been 

previously described and characterized (12). To date, 13,365 women have been enrolled in 

the MWS and completed the questionnaire. Of these, about 85% also consented to saliva 

donation, and 70% completed the process of donation as instructed and produced biobanked 

specimens.

2.2 Questionnaire Components

The questionnaire was filled out by all consenting women as their entry point into the MWS. 

It included detailed questions about reproductive history, life course socioeconomic data, 

alcohol use, and medication use, including NSAIDs, which can affect endogenous levels of 

steroids like DHEA (20). Additional questions about well-established risk factors included 

exogenous hormone exposures, and history of previous breast procedures. Reproductive 

factors included age at menarche and menopause, and specific pregnancy-related questions 

included parity, age-at-first birth, infertility and treatment for infertility, duration of breast 

feeding, birth weight of children, preterm birth, pregnancy weight gain, and pregnancy 

related hypertension.

2.3 Calibrated Mammographic Density

One of the novel features of this study is the measure of breast density as % fibroglandular 

volume (%FGV), by the method of single-energy X-ray absorptiometry (SXA). This method 

uses a calibration phantom of the same thickness as the compressed breast, circumventing 

some of the problems associated with other breast density measures, such as subjectivity and 

a lack of absolute reference standards (21). This study used the first generation calibration 

phantom (Gamma). Initial results on over 8600 women showed that SXA is precise and 

accurate when using reference phantoms, and inversely correlated with age, BMI and 

menopausal status; it is also positively associated with breast cancer risk (22, 23). %FGV 

data were obtained from the SFMR through a cooperative agreement upon linkage to MWS 

data for all consenting women.
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2.4 Saliva collection and Steroid Hormone Assay

Saliva samples were collected to assess systemic steroid hormone levels, as saliva testing 

represents a cost effective approach to screening large populations (19). Sex steroids were 

measured from cryobanked saliva after precipitating out all cell and particulate components. 

At the time of entry into the MWS, women were asked on the questionnaire if they were 

willing to donate a saliva specimen. Those who consented were sent a kit in the mail. 

Returned specimens were bar coded, logged and cryobanked. In total, 8,598 saliva samples 

have been processed. Processed supernatants were sent to Aeron Biotechnology, Inc. (San 

Leandro, CA) for radioimmunoassay (RIA) of dehydroepiandrosterone (DHEA), estradiol 

(E), progesterone (P) and testosterone (T). The entire MWS sample set submitted for 

analysis of these four steroid hormones (n = 1,784 ) were compared to results from an 

independent contemporary cohort of female samples randomly submitted for commercial 

analysis, to confirm expected age-specific changes in the hormone levels (Figure 1). Criteria 

for inclusion in the MWS saliva analysis required submission of a non-bloody early morning 

saliva sample of > 3 ml volume, following at least eight hours of fasting. Samples from post-

menopausal women required attesting to an absence of menses for at least one year.

2.5 Statistical Analyses

The analytic sample comprised 1,023 postmenopausal women not taking exogenous 

hormones who had an analyzable saliva sample for hormone levels and questionnaire data 

on the variables included in the model. Distributions of the study variables were examined 

against a reference range of postmenopausal women to verify that levels were consistent 

with the known ranges for this population. Multivariable linear regression analyses were 

constructed using Stata 11.2 (StataCorp. 2009. Stata Statistical Software: Release 11. 

College Station, TX: StataCorp LP) to examine the associations between salivary hormone 

levels, %FGV and reproductive factors, controlling for relevant confounders. The models 

employed robust regression using iteratively reweighted least squares to minimize the 

effects of outliers. To examine the association between salivary hormone levels and known 

or suspected confounders, a separate model was constructed for each hormone and included 

a base set of confounding variables. The base set of variables included continuous current 

age, BMI, hours of weekly moderate or vigorous exercise, number of alcoholic drinks 

consumed per day, parity, and age at menopause, as well as race (Black, White, Asian, 

Hispanic, Other), education (high school or less, some college, college degree or higher), 

use of complementary and alternative medicines (CAMS – or natural nonprescription 

hormone medications) (yes/no), and age at menarche (10 or younger, 11–14, 15+). One 

model was constructed for the entire population examining the reproductive factors of 

parity, age at menarche, and age at menopause. Another model restricted to parous women 

was examined using a wider range of reproductive factors related to the first pregnancy 

including weeks gestation, high blood pressure, gestational weight gain, age-at-first full term 

birth, birth weight, and duration of breast feeding. Prior to regression, hormone levels were 

log transformed and % FGV was square root transformed to normalize the distribution. 

Women were excluded from all analyses if they had a history of breast cancer, if their first 

birth was multiple gestation, if they had used antiestrogens in the last five years, if they had 

a history of ovariectomy, or if any of the variable data was missing from the questionnaire. 
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In the model where %FGV was the dependent variable, we also controlled for family history 

of breast cancer (first degree relative), hormone use near the time of the mammogram, and a 

measure of the number of days between saliva donation and %FGV measurement. Models in 

which one of the four assayed hormone levels was the dependent variable included the base 

set of confounding variables plus batch, number of hours fasting, and time of saliva 

donation. Given the numerous comparisons being made, borderline significant findings are 

not highlighted in the results section.

3. Results

3.1 The Marin Women’s Study (MWS) biospecimens and saliva steroid levels

The results of the 1,784 saliva supernatants submitted for commercial analysis of steroid 

hormone levels are presented in Figure 1. The age specific hormone levels of the MWS 

cohort appear generally concordant with those of an independent and contemporary cohort 

of women, in which expected age and postmenopausal hormonal declines are apparent. In 

both these female cohorts, the most significant age-related hormonal decreases were noted in 

DHEA and testosterone levels (Figure 1). Many of the elevated estradiol and progesterone 

levels in MWS study subjects over age 50 illustrated in this figure reflected their reported 

use of HRT; these study samples were excluded from the subsequent analysis of 

postmenopausal subjects, resulting in a final postmenopausal set of 1,023 saliva samples for 

hormone analysis.

3.2 Postmenopausal study sample summary characteristics (breast density, reproductive 
parameters, hormone levels)

The study sample (n= 1,023) represents the subset of postmenopausal study subjects 

submitting saliva samples eligible for hormone analysis (Table 1). The mean %FGV in the 

analysis population was 28.49. The majority of the population is white, has a college degree, 

a normal BMI, and is on average 11.8 years postmenopausal.

Table 2 presents the distribution of reproductive characteristics for this postmenopausal 

MWS cohort. Nearly one quarter (24.8%) of women had a first birth at age 30 years or 

older. Pregnancy induced hypertension was reported by 4.47% of the population, and high 

and low birth weight were reported by 9.14% and 5.49% of the cohort, respectively. Ninety-

two percent (92%) of the respondents reported that their first birth was full term, with a 

mean 29.65 pound weight gain. On average, respondents reported 6.34 months of 

breastfeeding after this first birth.

The distribution of hormone levels (geometric means) are presented in Table 3. Mean levels 

for the analysis populations were within the reference range for postmenopausal women for 

DHEA, estradiol, progesterone and testosterone (109.56, 0.77, 20.32, and 19.87, 

respectively).

3.3 Multivariate analyses

A multivariate model examining the reproductive factors of parity, age at menarche and age 

at menopause is presented in Table 4. In this set of models, the only association between one 
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of the hormone levels and parity was the positive association with DHEA (p=0.01). Age was 

significantly negatively associated with levels of DHEA and testosterone (p<0.001). BMI 

was significantly associated with DHEA (p=0.002), as was weekly exercise (p=0.04) and 

current smoking (p=0.01). BMI was also significantly associated with estradiol (p=0.001). 

Use of complementary and alternative medicine (CAMS) was significantly associated with 

progesterone levels (p=0.04).

Table 5 shows associations between hormone levels and characteristics of first birth in the 

postmenopausal subset of parous women (n=682). When controlling for all other factors in 

the model, including levels of the three other study hormones, breast feeding was 

significantly positively associated with DHEA levels (p=0.04). No other reproductive 

factors were significantly related to DHEA. The proportion of the variability in DHEA 

explained by this model was 38% due in large part to the inclusion of estradiol, progesterone 

and testosterone as variables; an analogous model that did not include simultaneous control 

for the other three hormones had an R squared value of 10% (data not shown). There were 

no significant associations between reproductive factors and estradiol or progesterone. The 

model for estradiol explained 19% of the variability in estradiol. Thirty nine percent (39%) 

of the variability in testosterone was explained by this model.

The results of the multivariate regression model of hormone levels on %FGV are shown in 

Table 6. The only hormone significantly associated with %FGV was testosterone, which 

showed a negative association with %FGV (p=0.04). BMI was also significantly, negatively 

associated with %FGV (p<0.001). Asian women had significantly higher %FGV than white 

women (p=0.02) even after control for the other model variables.

4 Discussion

4.1 Parity, Postmenopausal Steroid Hormone Associations, and Breast Cancer Risk

In this study population of 1,023 postmenopausal women in the MWS, parity was positively 

associated with only DHEA. No other salivary hormones were significantly related to parity 

in this group. When these associations are taken without adjusting for other hormones, it is 

hard to determine the extent to which postmenopausal DHEA influences breast cancer risk 

in this population. Postmenopausal testosterone levels have clearly been linked to an 

increased risk of developing hormone receptor positive breast cancer (24), but such evidence 

relating to DHEA has not been as convincing. Earlier prospective case control studies have 

shown that postmenopausal DHEA levels correlate positively with breast cancer risk (25). 

However, in a more recent analysis from the Nurses’ Health Study of endogenous hormone 

levels and postmenopausal breast cancer risk wherein significantly positive associations 

with risk were shown for estradiol and testosterone levels (RR=1.3 and 1.29, respectively), 

the weakerincrease in breast cancer risk seen with sulfated DHEA (RR=1.15) became non-

significant upon stepwise regression analysis (24). As a metabolic precursor to both 

androgens and estrogens, DHEA is produced in the adrenals, gonads and brain; and even 

much later in life DHEA remains the most abundant of all circulating sex steroids, as shown 

in the current study (Table 3). Although a weak partial agonist of the androgen receptor 

(AR) and both forms of estrogen receptor (ERalpha and ERbeta), the higher circulating 

levels of DHEA over E2 and T do not come close to compensating for its much weaker AR 
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and ER binding affinities. Therefore, consistent with the current controversy over whether 

DHEA enhances or reduces the risk of breast (or prostate) cancer, not to mention the fact 

that sex steroid receptor-independent effects of DHEA have also been reported that could 

alter mammary gland susceptibility to tumorigenesis (26), it is not possible to conclude that 

our observed association between parity and DHEA is at all linked to postmenopausal breast 

cancer risk. Of note, DHEA levels can also be induced by vigorous exercise and caloric 

restriction sufficient to achieve a lean body mass.. Since vigorous exercise and low BMI are 

clearly associated with decreased postmenopausal breast cancer risk, higher DHEA levels in 

the MWS population could actually correlate with lower breast cancer risk by acting as a 

surrogate biomarker for risk-reducing exercise and lower BMI in this population.

4.2 First Pregnancy Association with Postmenopausal Hormone Levels and 
Mammographic Density

DHEA was significantly associated with breastfeeding among parous women, but among 

this group of parous women, the number of births (parity) was not significantly associated 

with DHEA. The only other association between a reproductive factor and hormone level 

among parous women was the borderline significant negative association between 

testosterone and age-at-first birth between ages 20–29 (compared to birth before age 20). 

The postmenopausal hormone levels (DHEA, testosterone) best associated with pregnancy 

characteristics did not show comparable associations with postmenopausal mammographic 

density. This observation may mean that pregnancy itself induces early, persistent, and 

protective morphologic changes in the breast reflected in postmenopausal breast density, but 

by mechanisms other than long lived hormonal changes. In this fashion, first pregnancy 

characteristics and postmenopausal hormone levels would be expected to influence breast 

cancer risk independently.

4.3 Reproductive Characteristics and Postmenopausal Mammographic Density

Given the strong association between breast cancer risk and mammographic density, 

whether measured by conventional BIRADS (Breast Imaging Reporting and Data system) 

classification or more modern SXA quantitation of %FGV (as reported here), there has been 

continuing interest in determining either correlative or causative links between 

mammographic density and breast cancer risk although, to date, such biological and genetic 

links remain largely unresolved (10). Clear associations between changes in breast density 

and increasing age, higher BMI, and exogenous hormone (e.g. combined E + P replacement 

therapy) or anti-hormone (e.g. antiestrogen) use have spurred epidemiologic studies seeking 

other associations consistent with long term breast hormonal exposure. So far, meta analyses 

of these studies indicate no consistent or significant associations between postmenopausal 

breast density and age-at-first birth, breast feeding, or other reproductive characteristics 

(after adjustment for age and BMI) other than parity (10). We observed that postmenopausal 

breast density was borderline significantly lower with parity (as well as with higher BMI), 

but not with age at menarche, first birth, or menopause. Hence, while our findings appear to 

be in complete agreement with many other epidemiologic studies, they do not implicate long 

term hormonal exposure and do not shed any additional light on the partially protective 

effect of parity on postmenopausal breast density.
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4.4 Study Strengths and Weaknesses

This study has a number of important strengths, including a relatively large sample size, a 

novel measure of breast density, and the availability of information on a wide variety of 

reproductive characteristics and other breast cancer risk factors.

The primary limitation in this study is the use of self-reported data for reproductive history 

and early life risk factors such as age at menarche. Though it is possible that women may 

not accurately recall information about their first pregnancy, particularly if it occurred in the 

distant past, we would expect that they would accurately recall the major events including 

their age when they got pregnant, and whether they breast-fed. To the extent that 

misclassification of exposures is present, we expect it would be nondifferential (i.e., not 

associated with %FGV or salivary hormone level), and would thus bias the results toward 

the null. Another limitation is that, despite the fact that the overall sample size in this study 

was large, the sample size was small for specific subgroup analyses. Studies with larger 

populations may be better able to detect significant associations between birth 

characteristics, hormone levels, and breast density where they exist. Selection bias may be 

present in the sample of patients providing saliva samples for the hormone analyses; women 

who consented to donate saliva were significantly more likely to be of White Non-Hispanic 

race and to be of higher socioeconomic status based on education and income, but were not 

significantly different in terms of family history of breast cancer or current age. This 

selective participation would only be expected to bias the results if the associations between 

birth characteristics, hormone levels, and breast density differ by race or socioeconomic 

status. While we do not anticipate that this would be the case, bias in the results due to 

selective participation cannot be ruled out. This does, however, limit the ability to generalize 

the findings here to a broader, more racially diverse population. Finally, the analyses of birth 

characteristics were intentionally restricted to first births, but it will be important to 

determine whether the findings for first birth characteristics hold for all births or whether 

they are unique to the first birth (e.g., whether total duration of breast-feeding has the same 

association with hormone levels as duration of breast-feeding after the first birth).

5. Summary and Conclusions

Expected age and postmenopause related declines in estradiol (E), progesterone (P), 

dehyroepiandrosterone (DHEA) and testosterone (T) levels were observed. DHEA and T 

were the only postmenopausal hormone levels significantly associated with any reproductive 

characteristics: parity and breast feeding for DHEA, age-at-first birth for T. Postmenopausal 

breast density was borderline significantly negatively associated with parity, and T was the 

only hormone level to retain any association with %FGV in multivariable analysis (negative, 

p=0.04). These findings suggest that first pregnancy effects on later life breast density and 

cancer risk are not strictly mediated by later life sex steroid hormone levels.
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Figure 1. 
Age-specific salivary sex steroid hormone levels in the Marin Women’s Study (MWS) 

cohort. Early morning saliva samples (n = 1,784) collected, cryobanked and processed in 

compliance with the MWS protocol, as described in Methods, were analyzed by RIA for 

levels of estradiol (E), progesterone (P), testosterone (T) and dehydroepiandrosterone 

(DHEA). The age (decade) distribution of log-transformed hormone values are box plotted 

as shown; and the age-specific sex steroid hormone levels from the MWS samples are 

shown in relation to a geographically independent, contemporary cohort of US females (not 

part of the MWS) who provided saliva samples by the same collection protocol, identically 

processed and analyzed (Aeron Biotechnology). Age-specific changes in hormone levels 

were tested for significance (p-values) by analysis of trends. A subset of these MWS saliva 

samples collected from postmenopausal women (n = 1,023) were used for the study 

comparison with reproductive characteristics and postmenopausal breast density.
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Table 1

Covariate Distribution (n=1,023)

Characteristic Mean (SD)

%FGV 28.49 (16.59)

Parity 1.63 (1.29)

Number of alcoholic drinks per day 0.91 (.99)

BMI 24.76 (4.69)

Hours of strenuous and moderate exercise per week 8.99 (3.94)

Age of menopause (among menopausal women) 50.81 (5.74)

Current Age (years) 62.80 (8.02)

Characteristic Percent

Taking CAMS 4.50%

Smoking

 Never 46.92%

 Current 3.03%

 Former 50.05%

Education

 HS or less 4.69%

 Some college 26.20%

 College or more 69.11%

Race

 White 93.16%

 Black 0.39%

 Asian 2.74%

 Other 1.76%

 Hispanic 1.96%

BBA Clin. Author manuscript; available in PMC 2016 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mockus et al. Page 13

Table 2

Distribution of Reproductive Characteristics (n=1,023)

Characteristic Percent

Age at first birth

 Nulligravid 16.42%

 Nulliparous 10.75%

 <20 2.93%

 20–29 45.06%

 30–34 15.25%

 35+ 9.58%

Menarche

 10 or younger 4.99%

 11–14 86.61%

 15+ 8.41%

 First Pregnancy Characteristic in Parous Women Percent

Birthweight

 Low 5.49%

 High 9.14%

 Normal 85.37%

Pregnancy High Blood Pressure (%) 4.47%

Weeks gestation

 38+ 92.27%

 36–37 6.51%

 <=35 1.22%

 First Pregnancy Characteristic in Parous Women Mean (SD)

Pregnancy weight gain (pounds) 29.65 (11.70)

Months of breastfeeding (first child) 6.34 (7.03)
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Table 3

Mean levels of salivary hormones (postmenopausal women, n=1,023)

Geometric means (pg/ml) Reference range (postmenopausal women)

DHEA 109.56 33–200 (age-specific)

Estradiol 0.77 <1.5

Progesterone 20.32 <50

Testosterone 19.87 11–35 (age-specific)
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Table 4

Linear Regression Model: Salivary Hormone Levels in postmenopausal MWS women with hormone 

measurement and model variables (n=1,023)

Log DHEA
Beta coefficient (95% 
CI)

Log Estradiol
Beta coefficient (95% 
CI)

Log Progesterone
Beta coefficient (95% 
CI)

Log Testosterone
Beta coefficient (95% 
CI)

Reproductive Factors

Parity (0–5) .04 (.01, .07)* .01 (−.01, .02) −.001 (−.02, .02) .01 (−.02, .03)

Menarche (vs. ≤10)

 11–14 .07 (−.11, .26) −.0002 (−.10, .10) .07 (−.06, .20) .10 (−.04, .24)

 15+ .02 (−.06, .10) −.04 (−.17, .08) .11 (−.05, .27) .05 (−.12, .23)

Age of menopause .0004 (−.01, .01) −.001 (−.004, .003) −.002 (−.01, .003) .004 (−.002, .01)

Other Factors

Age (years) −.02 (−.03, −.02)* −.001 (−.004, .002) .001 (−.003, .004) −.01 (−.01, −.01)*

CAMS use .04 (−.16, .23) .04 (−.07, .14) .14 (.003, .28)* .05 (−.10, .20)

BMI .01 (.005, .02)* .01 (−.003, .01)* −.01 (−.01, .001) .02 (.01, .02)

Alcohol consumption .02 (−.02, .06) .01 (−.02, .03) −.03 (−.06, .002)** .03 (−.002, .06)**

Weekly exercise .01 (.001, .02)* .001 (−.004, .01) −.001 (−.01, .01) .003 (−.005, .01)

Smoking (versus never)

 Current .31 (.07, .55)* −.10 (−.23, .03) .05 (−.12, .21) .11 (−.08, .29)

 Former .02 (−.06, .10) .01 (−.03, .06) .02 (−.04, .08) .04 (−.02, .11)

Race (vs white)

 Black .09 (−.55, .73) −.22 (−.57, .12) .20 (−.25, .65) −.18 (−.67, .31)

 Asian −.10 (−.34, .15) .02 (−.12, .15) −.04 (−.22, .13) .01 (−.18, .20)

 Other −.16 (−.46, .14) −.02 (−.18, .15) .01 (−.21, .22) −.20 (−.43, .03)**

 Hispanic −.22 (−.51, .07) .01 (−.15, .16) .10 (−.11, .31) −.16 (−.38, .07)

Education (versus HS or less)

 Some college .05 (−.15, .25) .02 (−.09, .13) −.12 (−.26, .03) −.05 (−.21, .10)

 College graduate .02 (−.17, .21) .01 (−.09, .12) −.11 (−.24, .03) −.05 (−.20, .10)

R2 .09 .04 .02 .04

Controlled for batch, hours fasting, and time donated. Models do not include simultaneous control for other three hormones

**
denotes borderline significance (p<0.1)

*
denotes statistical significance (p<0.05)
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Table 5

Linear Regression Model: Salivary Hormone Levels in parous postmenopausal MWS women with hormone 

measurement and model variables (n=682)

Log DHEA
Beta coefficient (95% 
CI)

Log Estradiol
Beta coefficient (95% 
CI)

Log Progesterone
Beta coefficient (95% 
CI)

Log Testosterone
Beta coefficient (95% 
CI)

Reproductive Factors

Parity (number: 1–5) .04 (−.01, .08) .01 (−.01, .04) .00004 (−.04, .04) −.003 (−.04, .03)

Weeks gestation (versus 38+ 
weeks)

 36–37 weeks .09 (−.08, .26) −.03 (−.12, .07) −.02 (−.15, .11) −.04 (−.16, .08)

 <35 weeks .04 (−.31, .38) .04 (−.16, .24) .001 (−.27, .27) .10 (−.15, .34)

High Blood Pressure (vs. No) −.12 (−.32, .08) −.03 (−.14, .09) .10 (−.05, .26) .01 (−.13, .16)

Gestational weight gain (lbs) .0005 (−.003, .004) −.002 (−.004, .001) .001 (−.002, .004) −.0001 (−.003, .003)

Age at first birth (vs. <20)

 20–29 .14 (−.07, .36) .02 (−.11, .14) −.07 (−.23, .10) −.14 (−.29, .02)**

 30–34 .12 (−.11, .35) .02 (−.11, .16) −.07 (−.25, .11) −.09 (−.25, .07)

 35+ .12 (−.12, .37) −.01 (−.15, .13) −.05 (−.24, .14) −.08 (−.25, .10)

Birthweight (vs. normal)

 Low .09 (−.09, .28) −.03 (−.13, .08) .02 (−.13, .16) −.09 (−.23, .04)

 High .02 (−.12, .16) .02 (−.06, .11) .08 (−.03, .19) −.02 (−.12, .08)

Breastfeeding (months) .01 (.0003, .01)* .0004 (−.003, .004) −.003 (−.01, .002) −.0004 (−.005, .004)

Menarche (vs. ≤ 10)

 11–14 .01 (−.18, .20) .02 (−.09, .13) −.02 (−.17, .13) .09 (−.04, .23)

 15+ −.03 (−.27, .20) −.03 (−.17, .10) .06 (−.12, .25) .07 (−.09, .24)

Other Factors

Age (years) −.02 (−.03, −.01)* −.0004 (−.004, .003) .01 (.004, .01)* .004 (−.0005, .01)**

CAMS use −.11 (−.32, .10) −.02 (−.14, .11) .20 (.03, .36)* −.18 (−.33, −.03)*

BMI .005 (−.01, .01) .004 (−.002, .01) −.01 (−.02, −.01)* .01 (.002, .02)*

Alcohol consumption .03 (−.01, .07) −.01 (−.04, .02) −.01 (−.04, .03) .02 (−.01, .06)

Weekly exercise .01 (−.003, .02) −.002 (−.01, .004) .00003 (−.01, .01) .004 (−.004, .01)

Smoking (versus never)

 Current .23 (−.01, .47)** .04 (−.10, .18) −.21 (−.40, −.02)* −.001 (−.17, .17)

 Former −.05 (−.13, .04) .03 (−.02, .08) .01 (−.06, .08) .002 (−.06, .06)
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Log DHEA
Beta coefficient (95% 
CI)

Log Estradiol
Beta coefficient (95% 
CI)

Log Progesterone
Beta coefficient (95% 
CI)

Log Testosterone
Beta coefficient (95% 
CI)

Race (vs white)

 Black .86 (−.17, 1.88) −.01 (−.61, .60) −.28 (−1.09, .53) −.41 (−1.14, .33)

 Asian −.09 (−.32, .15) −.001 (−.14, .14) .02 (−.16, .21) .0002 (−.17, .17)

 Other −.08 (−.40, .24) .04 (−.14, .23) .14 (−.11, .39) −.12 (−.34, .11)

 Hispanic −.13 (−.40, .15) .08 (−.08, .25) .21 (−.01, .42)** −.08 (−.28, .11)

Education (versus HS or less)

 Some college .05 (−.15, .24) .01 (−.10, .13) −.14 (−.29, .01)** −.03 (−.16, .11)

 College graduate .01 (−.18, .20) −.01 (−.12, .10) −.12 (−.27, .03) −.02 (−.15, .12)

R2 .38 .19 .20 .39

¶
Controlled for batch, hours fasting, and time donated. Includes simultaneous control for other hormones.

**
denotes borderline significance (p<0.1)

*
denotes statistical significance (p<0.05)
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Table 6

Linear Regression Model: %FGV in parous postmenopausal women (n=636)

%FGV
Beta coefficient (95% CI)

Reproductive Factors

Parity (number: 0–5) −.07 (−.15, .01)**

Menarche (vs. ≤10)

 11–14 −.28 (−.73, .17)

 15+ −.18 (−.72, .36)

Age of menopause .01 (−.01, .02)

Salivary Hormone Levels

DHEA .08 (−.08, .24)

Estradiol .09 (−.11, .29)

Progesterone .05 (−.10, .21)

Testosterone −.24 (−.45, −.03)*

Other Factors

Age (years) −.01 (−.02, .01)

Hormone use at mammogram −.44 (−.95, .08)**

BMI −.20 (−.22, −.18)*

Race (vs white)

 Black .82 (−.52, 2.16)

 Asian .62 (.10, 1.15)*

 Other .27 (−.50, 1.05)

 Hispanic .34 (−.28, .95)

Education (versus HS or less)

 Some college −.09 (−.51, .34)

 College graduate .01 (−.39, .41)

Weekly exercise −.003 (−.03, .02)

Alcohol consumption −.01 (−.10, .09)

Smoking (versus never)

 Current −.06 (−.62, .49)

 Former .03 (−.15, .22)
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%FGV
Beta coefficient (95% CI)

First degree relative with breast cancer .09 (−.13, .30)

R2 .33

**
denotes borderline significance (p<0.1)

*
denotes statistical significance (p<0.05)
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